What are Jobs?
Jobs represent document processing tasks in Fintelite AI. Every processing request (predict, parse, or fraud detection) creates a job that tracks the status, results, and metadata of the operation.
Job Types
PREDICT Data extraction jobs using templates or schemas
PARSE Full document parsing and OCR jobs
FRAUD Document fraud detection and analysis jobs
Job Lifecycle
IN_QUEUE
Job is queued and waiting to be processed by a worker
IN_PROGRESS
Worker has picked up the job and is actively processing it
COMPLETED
Job finished successfully with results available
FAILED
Job encountered an error during processing
CANCELLED
Job was manually cancelled before completion
Response Structure by Job Type
Each job type returns a different response structure when completed. Understanding these differences helps you parse results correctly.
PREDICT jobs extract structured data based on templates or schemas. The response includes:
config : Configuration used for extraction (version, parser_mode, enable_citations)
output.extraction : Extracted data format
output.confidences : Confidence scores for extracted fields
Without Citations
When enable_citations is false (default), fields contain direct values:
{
"output" : {
"type" : "json" ,
"extraction" : {
"invoice_number" : "INV-2024-001" ,
"invoice_date" : "2024-01-15" ,
"total_amount" : 1500.50 ,
"line_items" : [
{
"description" : "Widget A" ,
"quantity" : 10 ,
"unit_price" : 50.00 ,
"total" : 500.00
}
]
},
"confidences" : {
"average" : 92.5 ,
"fields" : {
"invoice_number" : 95.0 ,
"invoice_date" : 88.0 ,
"total_amount" : 96.5 ,
"line_items" : [
{
"description" : 93.0 ,
"quantity" : 91.0 ,
"unit_price" : 94.5 ,
"total" : 95.0
}
]
}
}
}
}
With Citations Enabled
When enable_citations is true, each field includes source references:
{
"output" : {
"type" : "json" ,
"extraction" : {
"invoice_number" : {
"value" : "INV-2024-001" ,
"citations" : [ "b.1" ]
},
"invoice_date" : {
"value" : "2024-01-15" ,
"citations" : [ "b.1" ]
},
"total_amount" : {
"value" : 1500.50 ,
"citations" : [ "b.5" ]
},
"line_items" : [
{
"description" : {
"value" : "Widget A" ,
"citations" : [ "b.10" ]
},
"quantity" : {
"value" : 10 ,
"citations" : [ "b.10" ]
},
"unit_price" : {
"value" : 50.00 ,
"citations" : [ "b.10" , "b.11" ]
},
"total" : {
"value" : 500.00 ,
"citations" : [ "b.11" ]
}
}
]
},
"confidences" : {
"average" : 92.5 ,
"fields" : {
"invoice_number" : 95.0 ,
"invoice_date" : 88.0 ,
"total_amount" : 96.5 ,
"line_items" : [
{
"description" : 93.0 ,
"quantity" : 91.0 ,
"unit_price" : 94.5 ,
"total" : 95.0
}
]
}
}
}
}
Citation References:
b.X: Reference to block index X in the document annotations
w.X: Reference to word index X in the document annotations
Citations are automatically disabled when using parser_mode: LITE. Use PLUS or PRO parser modes to enable citations.
PARSE Jobs - Document Parsing
PARSE jobs extract full document text and structure. The response includes:
output.annotations : Detailed document structure with content blocks
output.markdown : Array of markdown-formatted text for each page
output.metadata : Processing metadata including mode and page mapping
{
"output" : {
"type" : "json" ,
"annotations" : {
"blocks" : [
{
"type" : "SECTION_HEADER" ,
"content" : "SERVICE AGREEMENT" ,
"bbox" : [ 0.35 , 0.08 , 0.65 , 0.17 ],
"page" : 1 ,
"block_num" : 1 ,
"confidence" : "HIGH" ,
"confidence_val" : 0.98
},
{
"type" : "TEXT" ,
"content" : "This Service Agreement is entered into on January 15, 2024 \n between the parties listed below." ,
"bbox" : [ 0.1 , 0.2 , 0.9 , 0.35 ],
"page" : 1 ,
"block_num" : 2 ,
"confidence" : "HIGH" ,
"confidence_val" : 0.95
},
{
"type" : "TABLE" ,
"content" : "Item | Quantity | Price \n Widget A | 10 | $100.00 \n Widget B | 5 | $75.00" ,
"bbox" : [ 0.15 , 0.4 , 0.85 , 0.65 ],
"page" : 2 ,
"block_num" : 3 ,
"confidence" : "MEDIUM" ,
"confidence_val" : 0.87
},
{
"type" : "IMAGE" ,
"content" : "Company Logo" ,
"bbox" : [ 0.2 , 0.7 , 0.8 , 0.9 ],
"page" : 2 ,
"block_num" : 4 ,
"confidence" : "HIGH" ,
"confidence_val" : 0.96 ,
"image_url" : "image_1"
}
],
"references" : {
"image_1" : "..."
}
},
"markdown" : [
"# SERVICE AGREEMENT \n\n This Service Agreement is entered into on January 15, 2024 \n between the parties listed below." ,
"## Terms and Conditions \n\n Item | Quantity | Price \n --- | --- | --- \n Widget A | 10 | $100.00 \n Widget B | 5 | $75.00" ,
"## Signatures \n\n _____________________"
],
"metadata" : {
"mode" : "PLUS" ,
"page_mapping" : [
{ "original" : 1 , "processed" : 1 },
{ "original" : 2 , "processed" : 2 }
]
}
}
}
Block Structure:
type : Block type classification (SECTION_HEADER, HEADER, FOOTER, TABLE, IMAGE, TEXT)
content : Text content extracted from the block (lines combined with newlines). For IMAGE blocks, contains image caption if available
bbox : Normalized bounding box [x_min, y_min, x_max, y_max] (0-1 scale)
page : Original page number from source document
page_seq : Sequential page number in processed document (only present when using page ranges, e.g., pages: "1-5,10-15")
block_num : Sequential block number (used for citations)
confidence : Confidence level (HIGH, MEDIUM, LOW)
confidence_val : Numeric confidence score (0-1 scale, typically 0.85-0.95)
image_url : Reference key for IMAGE blocks (points to entry in references map)
Additional Fields:
references : Map of image references (image_id → base64 encoded image data)
Metadata Fields:
mode : Parser mode used (LITE, PRO, … )
page_mapping : Array of {"original": page_num, "processed": page_num} objects
total_pages is in the file object at the top level of the job response, not in output.metadata.
FRAUD Jobs - Fraud Detection
FRAUD jobs analyze documents for authenticity issues. The response includes:
output.output[0].anomalies : Detected fraud indicators with severity levels
output.output[0].font_analysis : Font consistency checks
output.output[0].image_analysis : Image manipulation detection
output.output[0].manipulation_analysis : Document tampering indicators
output.output[0].metadata_analysis : File metadata verification
output.output[0].summary : Overall risk assessment
{
"output" : {
"type" : "json" ,
"output" : [
{
"anomalies" : [
{
"type" : "total_mismatch" ,
"severity" : "MEDIUM" ,
"location" : "Page 1, Region: (7.3, 34.5, 85.3, 2.5)" ,
"details" : "Content data mismatch detected" ,
"evidence" : "Critical calculation mismatch for 'Ordinary Pay'. The listed Rate (2000.0000) multiplied by Hours (40.00) should be $80,000.00..."
}
],
"font_analysis" : [
{
"number" : 1 ,
"indicator" : "Font Overview" ,
"status" : "PASS" ,
"description" : "Summary of fonts used in the document" ,
"value" : {
"total_fonts" : 2 ,
"embedded_fonts" : 2 ,
"external_fonts" : 0
}
}
],
"image_analysis" : [
{
"number" : 1 ,
"indicator" : "Image Analysis Overview" ,
"status" : "PASS" ,
"description" : "Summary of image analysis findings" ,
"value" : {
"total_images" : 1 ,
"clean_images" : 1 ,
"suspicious_images" : 0
}
}
],
"manipulation_analysis" : [
{
"number" : 1 ,
"indicator" : "Visual Content Analysis" ,
"status" : "PASS" ,
"description" : "Analyzes document content for inconsistencies" ,
"value" : {
"layout_consistency" : true ,
"consistency_anomalies" : []
}
}
],
"metadata_analysis" : [
{
"number" : 1 ,
"indicator" : "Document Timeline" ,
"status" : "PASS" ,
"description" : "Checks if the document has been modified after creation" ,
"value" : {
"created_at" : "D:20251216074741+13'00'" ,
"last_modified" : "Not Available" ,
"file_type" : ".pdf" ,
"file_size" : 7463
}
}
],
"summary" : {
"risk_level" : "WARNING" ,
"issues_detected" : [ "Image Manipulation" ],
"metrics_summary" : "1 of 4 triggered review-level indicators."
}
}
]
}
}
Risk Levels:
TRUSTED: No significant issues detected
WARNING: Minor inconsistencies found
HIGH_RISK: Critical fraud indicators detected
Understanding Output Types: JSON vs URL
Job results can be delivered in two formats depending on the response size.
JSON Output (type: "json")
For smaller responses, data is provided directly in the response:
{
"id" : "job-uuid" ,
"status" : "COMPLETED" ,
"output" : {
"type" : "json" ,
"extraction" : {
"field1" : "value1" ,
"field2" : "value2"
},
"confidences" : {
"average" : 0.95
}
}
}
Access data directly from the output field based on job type:
PREDICT : output.extraction
PARSE : output.markdown and output.annotations
FRAUD : output.extraction
URL Output (type: "url")
For large responses, results are stored in S3 with a presigned URL:
{
"id" : "job-uuid" ,
"status" : "COMPLETED" ,
"output" : {
"type" : "url" ,
"url" : "https://s3.amazonaws.com/results/job-uuid.json" ,
"expires_at" : "2024-01-16T10:30:00Z" ,
"metadata" : {
"result_size_bytes" : 3145728
}
}
}
Handling URL Output:
async function getJobResults ( jobId ) {
const job = await fetch ( `https://api-vision.fintelite.ai/status/ ${ jobId } ` , {
headers: { 'X-API-Key' : API_KEY }
}). then ( r => r . json ());
if ( job . output . type === 'url' ) {
// Fetch results from presigned URL
const results = await fetch ( job . output . url ). then ( r => r . json ());
return results ;
} else {
// Access inline data
return job . output . extraction || job . output . markdown || job . output . annotations ;
}
}
URL Expiration : Presigned URLs expire after 24 hours. Download and store results before expiration if needed for later use.
Output Type Control:
The API determines output type based on:
force_url: true in request → Always returns URL output
Response size > 2MB → Automatically returns URL output
Otherwise → Returns JSON output
{
"files" : "https://example.com/large-document.pdf" ,
"template_id" : "INVOICE" ,
"force_url" : true // Force URL output regardless of size
}
Always check the type field and handle both json and url output formats in your code, as large responses will automatically use URL format even without force_url.
Job Status Examples
Common Job Statuses
These statuses apply to all job types (PREDICT, PARSE, FRAUD) with the same structure. Only the type field differs.
Job is queued and waiting to be processed. {
"id" : "550e8400-e29b-41d4-a716-446655440000" ,
"type" : "PREDICT" , // or "PARSE", "FRAUD"
"status" : "IN_QUEUE" ,
"execution_time" : 0 ,
"delay_time" : 0 ,
"file" : {
"id" : "file-123" ,
"filename" : "invoice.pdf" ,
"type" : "application/pdf" ,
"total_pages" : 3
}
}
Job is currently being processed. {
"id" : "550e8400-e29b-41d4-a716-446655440001" ,
"type" : "PREDICT" , // or "PARSE", "FRAUD"
"status" : "IN_PROGRESS" ,
"execution_time" : 0 ,
"delay_time" : 1245 ,
"file" : {
"id" : "file-124" ,
"filename" : "receipt.jpg" ,
"type" : "image/jpeg" ,
"total_pages" : 1
}
}
Job processing failed with error details. {
"id" : "550e8400-e29b-41d4-a716-446655440005" ,
"type" : "PREDICT" , // or "PARSE", "FRAUD"
"status" : "FAILED" ,
"execution_time" : 1200 ,
"delay_time" : 450 ,
"file" : {
"id" : "file-128" ,
"filename" : "corrupted.pdf" ,
"type" : "application/pdf" ,
"total_pages" : 0
},
"config" : {
"template_id" : "template-uuid" ,
"parser_mode" : "PLUS" ,
"enable_citations" : false
},
"error" : {
"code" : "PROCESSING_ERROR" ,
"message" : "Failed to parse document: file is corrupted or unreadable"
}
}
Job was cancelled while in queue. {
"id" : "550e8400-e29b-41d4-a716-446655440006" ,
"type" : "PREDICT" , // or "PARSE", "FRAUD"
"status" : "CANCELLED" ,
"execution_time" : 0 ,
"delay_time" : 5000 ,
"file" : {
"id" : "file-129" ,
"filename" : "cancelled-doc.pdf" ,
"type" : "application/pdf" ,
"total_pages" : 10
}
}
Synchronous vs Asynchronous
Synchronous Processing
Returns results immediately in the response:
curl -X POST https://api-vision.fintelite.ai/predict \
-H "X-API-Key: YOUR_API_KEY" \
-F "files=id://file-uuid" \
-F "template_id=template-uuid"
Response includes job details and results:
{
"id" : "job-uuid" ,
"status" : "COMPLETED" ,
"output" : {
"type" : "json" ,
"output" : [ ... ],
"confidences" : { ... }
}
}
Best for:
Small documents (1-5 pages)
Real-time applications
Interactive user flows
Not recommended for production at scale. Synchronous endpoints may timeout on large documents or under high load. Use asynchronous endpoints (/predict-async, /parse-async, /fraud-async) for production deployments.
Asynchronous Processing
Returns job ID immediately, check status later:
curl -X POST https://api-vision.fintelite.ai/predict-async \
-H "X-API-Key: YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"files": "id://file-uuid",
"template_id": "template-uuid",
"webhook": {
"url": "https://your-app.com/webhook",
"metadata": {
"order_id": "12345"
}
}
}'
Response with job ID:
{
"id" : "job-uuid" ,
"status" : "IN_QUEUE"
}
Best for:
Large documents (5+ pages)
Batch processing
Background workflows
Non-blocking operations
Webhook Notifications
Get notified when async jobs complete:
Include webhook configuration in async requests:
curl -X POST https://api-vision.fintelite.ai/predict-async \
-H "X-API-Key: YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"files": "id://file-uuid",
"template_id": "template-uuid",
"webhook": {
"url": "https://your-app.com/webhook/fintelite",
"metadata": {
"customer_id": "cust-123",
"order_id": "order-456",
"internal_ref": "ref-789"
}
}
}'
Webhook Payload
When the job completes, your endpoint receives:
{
"job_id" : "job-uuid" ,
"status" : "COMPLETED" ,
"job_type" : "PREDICT" ,
"metadata" : {
"customer_id" : "cust-123" ,
"order_id" : "order-456" ,
"internal_ref" : "ref-789"
},
"completed_at" : "2024-01-15T10:05:30Z" ,
"execution_time" : 3450 ,
"results" : {
"type" : "url" ,
"url" : "https://s3.amazonaws.com/presigned-url..." ,
"expires_at" : "2024-01-15T11:05:30Z"
}
}
Webhook Best Practices
Verify that webhooks are coming from Fintelite AI by checking the signature header (implementation depends on your webhook configuration).
Return a 200 OK response within 5 seconds. Process the payload asynchronously if needed. app . post ( '/webhook/fintelite' , ( req , res ) => {
// Send 200 response immediately
res . status ( 200 ). send ( 'OK' );
// Process async
processWebhook ( req . body ). catch ( console . error );
});
Fintelite will retry failed webhook deliveries up to 3 times. Implement idempotency to handle duplicate deliveries. const processedJobs = new Set ();
async function processWebhook ( payload ) {
if ( processedJobs . has ( payload . job_id )) {
return ; // Already processed
}
// Process...
processedJobs . add ( payload . job_id );
}
Use HTTPS
Implement authentication/verification
Validate payload structure
Rate limit requests
Job Priority
Jobs are processed in the order they’re received (FIFO - First In, First Out). Priority handling may be available on enterprise plans.
Error Handling
When jobs fail, they transition to FAILED status with error details in the error field.
Common Failure Reasons
Document Quality Poor scan quality, low resolution, or unclear text
Format Issues Corrupted file, unsupported format, or password-protected documents
Processing Timeout Document too large, too complex, or processing exceeded time limits
Service Errors Temporary service unavailability or rate limit exceeded
Best Practices
Use webhooks instead of polling to get notified of failures
Implement retry logic with exponential backoff for transient errors
Monitor error patterns to identify systematic issues
Validate documents before submission to catch format issues early
Use Webhooks Avoid polling by implementing webhook notifications
Batch Processing Submit multiple jobs in parallel for batch operations
File Reuse Upload files once, reference by ID for multiple jobs
Template Caching Reuse templates instead of providing schemas each time
Monitoring and Analytics
Track job metrics through your account dashboard:
Success Rate : Percentage of completed vs failed jobs
Average Processing Time : Mean execution time by job type
Queue Depth : Number of jobs waiting in queue
Credit Usage : Credits consumed by job type (Coming Soon)
Next Steps